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Complex Causal Process Diagrams for Analyzing 
the Health Impacts of Policy Interventions

| Michael Joffe, PhD, MD, MSc(Econ), and Jennifer Mindell, MB, BS, PhD, FFPHCausal diagrams are rig-
orous tools for controlling
confounding. They also can
be used to describe com-
plex causal systems, which
is done routinely in com-
municable disease epide-
miology. The use of change
diagrams has advantages
over static diagrams, be-
cause change diagrams are
more tractable, relate better
to interventions, and have
clearer interpretations.

Causal diagrams are a
useful basis for modeling.
They make assumptions
explicit, provide a frame-
work for analysis, generate
testable predictions, explore
the effects of interventions,
and identify data gaps.
Causal diagrams can be
used to integrate different
types of information and to
facilitate communication both
among public health ex-
perts and between public
health experts and experts
in other fields. Causal dia-
grams allow the use of in-
strumental variables, which
can help control confound-
ing and reverse causation.
(Am J Public Health. 2006;
96:473–479. doi:10.2105/AJPH.
2005.063693)

CAUSAL DIAGRAMS ARE
a useful way of summarizing
information not only for presen-
tation and communication but
also for analysis. They can spec-
ify causal relationships for mod-
eling in a way that is different
from traditional epidemiology, in
which “modeling” tends to be
used in the sense of statistical
modeling (an inductive ap-
proach). There is potential for
more use both of diagrammatic
ways of organizing causal rela-
tionships in complex systems and
of a priori modeling that specifies
causal pathways, an approach
that is well established in other
disciplines, such as air pollution
modeling and management
studies.1,2

HOW DIAGRAMMATIC
METHODS HAVE BEEN
USED

Causal diagrams that indicate
the relationship between vari-
ables have been developed in
recent years to help interpret epi-
demiological relationships.3,4 Be-
cause the diagrams depict links
that are causal and not merely
associational,5–7 they lend them-
selves to the analysis of con-
founding and selection effects.
The theory of directed acyclic
graphs has developed formal
rules for identifying variables
that must be measured and con-
trolled to obtain unconfounded
effect estimates. They have been
shown to be equivalent to alge-
braic formulations.3 Thus, they
are not only visually appealing
but also logically rigorous, and

they can help with planning data
collection and analysis, commu-
nicating results, and avoiding
subtle pitfalls of confounder se-
lection.3 Furthermore, they do
not require parametric assump-
tions such as linearity.

A similar approach can be
adopted to portray more com-
plex relationships. The idea of a
web of causation dates back to
19608: an early diagram, repro-
duced here as Figure 1, at-
tempted to explain why blood-
born hepatitis was observed to
be associated with syphilis.9 The
authors of the diagram worked
backward from this medically de-
fined problem to examine its an-
tecedents.

A related idea is that the de-
terminants of health are them-
selves liable to alteration by
more “upstream” influences. For
example, Dahlgren and White-
head depicted successive strata
of individual lifestyle factors, so-
cial and community networks,
economic sectors, and socio-
economic, cultural, and environ-
mental conditions (Figure 2).10

Susser and Susser11 conceived a
succession of Chinese boxes—
different units at multiple levels,
such as societies, individuals,
and physiological systems—
where each level contained a
succession of smaller boxes, and
each level had its own specific
type of lawful relations.

Such conceptual schemata
can indicate the complexity of
the forces that influence health,
but they have not facilitated a
thorough analysis of the specific
relationships. Their role has

sometimes been to provide a
broad framework that contrasts
with the perceived narrow
focus of mainstream epidemiol-
ogy, proffering instead eco-
epidemiology,11 or a redefinition
of epidemiology as “a study of
the distribution and societal de-
terminants of the health status
of populations.”12(p479) McMichael
argued that epidemiology must
escape from being “prisoner of
the proximate.”13(p887)

We believe such complex sys-
tems should be mapped as net-
works of specific causal path-
ways to harness the strengths of
epidemiology and integrate them
with other methods of analysis.
We will show how diagrams can
aid such a theoretical synthesis
by (1) specifying the causal link-
ages in complex systems, (2) or-
ganizing interdisciplinary re-
search, and (3) serving as a basis
for modeling. Another advantage
is that because many people find
it difficult to conceptualize com-
plex systems unless clear means
are devised to depict them,14,15

even simple diagrams can en-
courage a focus on multistrand
pathways, whereas traditional
epidemiology tends to be limited
to a single causal strand or even
to just one link. 

(Feedback loops, a feature of
some diagrams, introduce analytic
considerations that are beyond
the scope of this article. The
quantitative and statistical aspects
of diagrams and their associated
models, such as estimation of path
coefficients, use of sensitivity anal-
ysis to explore assumptions, and
use of simulation to investigate
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Source. Reproduced with permission from Lippincott Williams & Wilkins.9

FIGURE 1—The web of causation as depicted by MacMahon and Pugh.

system dynamics, also are beyond
the scope of this article.)

DIAGRAMMING COMPLEX
CAUSAL PATHWAYS

Outside the context of com-
municable diseases, diagramming
complex systems is compara-
tively undeveloped in the fields
of epidemiology and public
health. Patz et al. used a similar
diagrammatic approach to show
the potential impacts of climate
change on a range of health out-
comes through regional weather
changes and other intermediate

stages (e.g., air pollution levels
and contamination pathways).16

The World Health Organization
has developed the DPSEEA
(Driving force, Pressure, State,
Exposure, Effect, Action) dia-
grammatic model.17 Rehfuess ap-
plied a similar diagram to respi-
ratory diseases that grouped
factors into context, exposure,
health outcome, and action.18

Marmot used diagrams to illus-
trate social-structural, life-course,
psychosocial, and neuro-endocrine-
immune influences on health.19

These authors used diagrams to
organize knowledge, but they

did not include statistical analysis
or modeling, and they did not
focus on change models (see
“Change Models” section).

A diagram has been used to il-
lustrate the various pathways
through which traffic volume
and speed affect a range of
health outcomes20; the air pollu-
tion part of this was modeled to
estimate the potential health
gain for a local government area
in central London should the
United Kingdom achieve its na-
tional air quality target.21 Bicego
and Boerma used a diagram-
matic conceptual framework to

organize the statistical analysis
of the relationship between ma-
ternal education, key confound-
ers, intermediate variables, and
infant mortality in a developing
country context.22 Murray et al.
have examined aspects of the
statistical analysis of such struc-
tural systems.23

How then can diagramming
best be used to make sense of
the causal complexities underly-
ing major noncommunicable dis-
eases and other health problems?
First, we need to navigate be-
tween the extreme specificity of
Figure 1 and the generality of
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FIGURE 2—The Dahlgren and Whitehead schema of factors that influence health.10 

Figure 2. Among the many possi-
ble choices between breadth and
specificity, and the possible prin-
ciples that could be used to struc-
ture the problem, we favor divid-
ing the global scope of Figure 2
into manageable chunks accord-
ing to economic sector rather
than by, for example, clinical
categories or major risk factors.
Each policy area can then be fur-
ther divided into submodels as
required, which makes it possible
to replace the overarching semi-
circles (or the Sussers’ Chinese
boxes) with clearly specified
causal pathways.

Figure 3a shows the links be-
tween transport and health. Epi-
demiology quantifies the causal
relationships that end in a health
outcome, such as cardiovascular
disease affected by physical activ-
ity, respiratory symptoms af-
fected by air pollution, and
deaths/injuries that result from
traffic collisions; complementary
methods are required to fill in

the other links in the upper part
of the diagram. However, it is not
just a question of adding trans-
port expertise to health expertise;
the links in the upper part of the
diagram gain their importance
from their relationship to health.
In this sense, the diagram is con-
structed upwards—everything is
driven by the bottom line.

A diagram of this kind can in-
tegrate a wide variety of types of
information, including biological
and behavioral data, a methodol-
ogy that has become the norm
when modeling communicable
diseases24–26 and that can incor-
porate nonquantitative informa-
tion. This allows the integration
of different academic disciplines
into a single theoretical schema,
such as molecular biology, toxi-
cology, nutrition, sanitary engi-
neering, sociology, and econom-
ics.27 It also implies a broader
concept of health and its deter-
minants than is usual with epide-
miology. The causal links are

generally probabilistic, because
deterministic causality is rare in
public health.

Diagrams are rarely confined
to the details of a single instance;
rather, they seek to represent the
broad class of systems to which a
given instance belongs. For exam-
ple, a flow chart of the processes
that occur when diagnosing pedi-
atric cardiac anomalies is a sys-
tem in this sense, because each
child is a realization of the sys-
tem.28 Clearly, it is necessary to
carefully justify the assumption
that the system is invariant in
different circumstances.

CHANGE MODELS

So far, this discussion has been
based on a levels model, which
is the usual framework and is
shown in Figures 1, 2, and 3a.
However, a change model has
many advantages: (1) it is more
tractable, because only the ele-
ments that alter (including effect

modification) need to be consid-
ered; (2) it readily connects with
policies and other initiatives that
could affect health; and (3) it has
a clearer interpretation that can
readily be understood, e.g., the
health impact of a factory clo-
sure,29 whereas inferring causal-
ity from a comparison of em-
ployed and unemployed people
is fraught with difficulty.30

The starting point is familiar to
epidemiologists: when consider-
ing practical public health issues,
the concern is mainly with
changeable risk factors and how
their alteration leads to a change
in health status. Moving up-
stream to the determinants of the
health determinants, changes fall
into 3 categories: (1) sponta-
neous natural changes or societal
trends, (2) policy-induced
changes, and (3) the construction
of scenarios for use in model-
ing.31 The first includes weather
fluctuations, climate change, and
population growth or an aging
population. It also includes eco-
nomic growth that has effects on
health, both directly through in-
creased prosperity and indirectly
through increased road traffic
and meat consumption.32 Policy-
induced changes can be included
within a model, but it is prefer-
able to treat them as exogenous
and to document the health im-
pacts of the policy options.20 Sce-
narios have been underused in
the field of epidemiology; accord-
ing to McMichael, “We must also
address the issue of sustainability
[now that human activity is able]
to change the conditions for life
on Earth,”13(p894) rather than re-
main reactive.

For diagrams representing
more specific topics, such as
Figure 3a, the focus is now on
the change from one period to
the next rather than on a static
system. Change models are 
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Note. As a convention, the health outcomes are shown as being negative (harmful). This can be criticized as embodying a medical model of health and ignoring positive health, but that is not the
intention. For example, if mental health is likely to improve as a result of an increase in physical activity, the chart registers this in terms of a reduction in impaired mental health (without use of
clinical categories). There are 2 reasons for adopting this convention. First, it helps with reading the charts if the outcome always carries the same type of implication. Second, while it would have
been possible to introduce a positive convention instead, in practice most recorded health outcomes are problems—deaths, diseases, injuries—and arguably these also are more likely to influence
policy makers than more general considerations of well-being and positive health, however important we may consider these to be.
The causal direction for each link is specified with directional arrows. We use “+” for an increasing function (more of the item in the source box leads to more of that in the destination box), “–” for a
decreasing function, and no sign indicator if mixed. If color is available, we prefer to use a color code: blue, red, and black, respectively. For any particular chain of causation from a specific policy
intervention to a specific health outcome, the overall impact is positive (health gain) if there is an odd number of “–” (red) arrows, and negative (harmful) if there is an even number; however, the
presence of a mixed (black) arrow makes the overall effect of the chain indeterminate. For this reason, it is best to avoid arrows of mixed sign, as with a hump-backed function that has rising and
falling elements, and replace them with separate arrows that have unambiguous polarity.2

No attempt has yet been made in these charts to quantify the relationships shown. The thickness of the arrows can be used to show the strength of the causal association. The nature of the line
(e.g., continuous, dashed, or dotted) can show the degree of confidence in the judgment that the causal link exists (i.e., that it is different from zero, so that the null hypothesis is rejected, which is
approximately equivalent to a P value in statistics). The length can be used to represent duration, because causal relationships require time to take effect (e.g., latency in the causation of a disease
such as cancer); in practice, this makes drawing diagrams complicated, and an alternative method is to place a delay box within the arrow.2 Finally, it would be simple to create an electronic
version that enables the reader to click from an arrow to text that provides evidence for its existence, strength, etc., and back again.

FIGURE 3—Suggested diagrams of complex causal systems, (a) linking health outcomes to transportation, (b) linking changes in health
outcomes to transport policies, and (c) showing the predicted health impact of controlling traffic speed.

particularly useful when analyz-
ing the health impacts of policy
options.20 Thus, Figure 3a is re-
drawn as Figure 3b to show the
health impact of transport poli-
cies, with the top line changing
to indicate a series of exoge-
nously given types of policy,
and subsequent lines showing 

consequent changes in health de-
terminants and health outcomes
(indicated by ∆).

METHODOLOGICAL
ISSUES

Diagrams share many of the
functions of models, including

making assumptions explicit, pro-
viding a framework for data
analysis, generating testable pre-
dictions and projections, and ex-
ploring the effects of interventions
or the introduction of a new tech-
nology—all of which are routine in
communicable disease epidemiol-
ogy. By specifying the complete

causal system, diagrams help
identify data gaps or weak links.
Additionally, they can readily be
combined with an economic eval-
uation of the outcomes.

Diagrams that relate health
outcomes and health determi-
nants to their upstream causes
involve a mixing of languages,
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with the lower part being prima-
rily biological and the upper part
being more concerned with social
and economic processes, thus
providing a framework to inte-
grate different disciplines, e.g.,
transport and health. They also
facilitate the engagement of
stakeholders (people involved in
or affected by a proposal), for ex-
ample, in the context of health
impact assessment. Issues that
must be considered are (1) the
possible biases introduced when
incorporating causal knowledge
from a static study into a change
model, and (2) the inclusion of
different units of analysis, such
as individual level in the lower
part of the diagram and popula-
tion or locality level in the
higher part.13,33–36

There is no guarantee that a
unique diagram exists for any par-
ticular situation—different experts
may construct the causal relation-
ships differently. While at first
sight this is a disadvantage, it is in
fact a strength of the proposed ap-
proach: competing diagrams can
be compared, which is one way of
setting the agenda for empirical re-
search, and ultimately the research
findings will lead to the most ap-
propriate diagram being selected.

Empirical Data
Ideally, causal diagrams are con-

structed on the basis of good em-
pirical information—a combination
of data on individual links, black
box studies (i.e., those that show
association without specifying the
intervening links), and more com-
plex investigations. Sometimes it
may be necessary to infer the
magnitude of an individual link in-
directly from the model as a
whole or from a submodel, which
is the case with the transmission
rate of microorganisms.24 Obtain-
ing this information requires appro-
priate study designs.37 A useful

tactic is to exploit policy interven-
tions as natural experiments.38–40

Typically, the evidence is inade-
quate (or even absent) for some of
the specified links. It is still possible
to construct a diagram, but its sta-
tus is far less secure than a dia-
gram that is evidence based. The
process as we conceive it begins
with a diagram that is plausible in
the light of current evidence, and
therefore relies substantially on
judgment and generates the neces-
sary empirical research, which
leads to a well-supported diagram
that gives an accurate representa-
tion of the complex system. Follow-
up monitoring can be undertaken
after policy implementation, and
the results can be compared with
the model. Furthermore, the dia-
gram can be used for policy
reevaluation.

To include a box or an arrow
does not imply that they neces-
sarily have the effect depicted;
for example, if research were to
demonstrate that a particular link
does not apply (i.e., its magnitude
is zero), then in the future that
arrow would be deleted from the
diagram. Study design should
aim to distinguish findings that
are clearly negative from those
that are merely equivocal (i.e.,
falsifiability). A more serious po-
tential problem when creating a
diagram is the decision to omit a
particular pathway when it
should be included, because that
pathway is likely to be ignored in
subsequent empirical testing and
no self-correcting mechanism ex-
ists to put it back on the agenda.

Structural Aspects
The structure of a diagram

specifies independent chains of
causation. In Figure 3b, one
causal chain shows how emissions
control policies affect changes in
respiratory and cardiovascular
morbidity and mortality, another

chain demonstrates how promo-
tion of active transport (i.e., walk-
ing and bicycling) improves vari-
ous health outcomes via
increased physical activity and
access, and other chains show
how different types of policy af-
fect road deaths and injuries.
These chains need to correspond
to independent pathways. One
implication is that joint action
needs to be separately consid-
ered, for example, the use of
sticks as well as carrots, the com-
bination of which may be more
effective (supra-additive) than the
sum of their effects when used
alone.

Effect modification must be
considered, and can be repre-
sented as an arrow from a vari-
able (the effect modifier) to an-
other arrow (the association that
is modified) rather than to an-
other variable.23 Additivity is an-
other issue: in a complex causal
system, the effects of separate
but correlated factors are not in
general additive, because multi-
ple interacting risk factors act
simultaneously. For example, in-
fant mortality owing to a combi-
nation of malnutrition and in-
door air pollution can be
reduced by removing either fac-
tor, but the sum of both individ-
ual effects is not the same as the
effect of removing both.23 A
change model makes a specific
focus on the removal or alter-
ation of one factor possible,
which may be easier to interpret.

Human Agency
One question is how to handle

the issue of human intervention,
or agency. In principle, agency
can be included in scientific stud-
ies, which is routine in psychol-
ogy. It can involve modeling the
policy decision process itself, not
just the health impacts of differ-
ent options. An alternative is to

model the optimal decision in the
tradition of decision theory,36 ei-
ther for use with decision sup-
port in a nonprescriptive manner
or to specify the “rational” course
of action in light of inbuilt as-
sumptions, data, and structural/
institutional constraints.

These methodologies can be
characterized as analysis of policy.
A third possibility is to treat deci-
sionmaking as external to the
model—analysis for policy (e.g.,
health impact assessment). The
most complete way is to examine
the range of health effects for each
possible policy option in the con-
text of a comparison of options.20

This lends itself to a division of
labor between the technical pro-
cess of analyzing health conse-
quences and the political process of
policy development and decision-
making, which involves taking into
account underlying values, many
different types of outcome, trade-
offs between positive and negative
aspects, and lines of
accountability.20 However, the
choice of the range of policy op-
tions cannot be regarded as merely
neutral and apolitical, because fail-
ure to consider those that are re-
garded as controversial, possibly as
a result of pressure from those who
have economic or political vested
interests, is itself a political choice.
The course of action must be to ex-
amine all possible options.

Feedback
Until this point, we have been

assuming that feedback and
2-way causation (which would
be represented by double-
headed arrows in a diagram)
are absent. The examples in Fig-
ure 3 show that this is a reason-
able assumption for many pur-
poses, especially if the aim is to
analyze the health impacts of
policy options treated as exoge-
nous variables. This also holds
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for many other examples of con-
jectural diagrams that apply, for
example, to food/nutrition and
transport.41 When this assump-
tion cannot be made, it is neces-
sary to pay explicit attention to
how the variables involved in
such a relationship mutually in-
fluence one another over time,
which introduces additional ana-
lytic considerations. This is likely
to be more of a problem when
behavioral antecedents are in-
cluded (e.g., the mutual depen-
dence of food intake and nutri-
tional status)42—and especially if
the policy decision itself is in-
cluded within the model—than
when the more structural factors
we have discussed are included.

However, in many circum-
stances the possibility of risk
compensation—a behavioral re-
sponse to an environmental ex-
posure—must be considered. For
example, if a dangerous bend in
the road is straightened, drivers
may respond by increasing their
speed,43 a form of negative feed-
back that reduces the impact of
the intervention. From an analyt-
ical viewpoint, it reduces the
magnitude of the link (possibly to
zero) in the same way that mea-
surement error does. Risk com-
pensation can also take a more
complex form. For example, the
impact of traffic on child health
may include not only road in-
juries but also a more inactive in-
door lifestyle that may be partly
induced by parental fear of possi-
ble injury.44,45 The compensatory
action has far-reaching implica-
tions for public health, and in
such cases, a more complex dia-
gram is required.

As stated in an earlier section,
modeling of systems that contain
feedback loops is a well-developed
and complex area that is beyond the
scope of this article. When pres-
ent, feedback strongly influences

the dynamic behavior of the sys-
tem, and a modification of condi-
tions can produce complex
changes that require simulation
to explore them.1,2,46

Instrumental Variables
Change models that are cre-

ated on the basis of exogenous
interventions can be used to
control confounding and re-
verse causation by introducing
an upstream influence that is in-
dependent of the putative
causal influence(s). A similar
approach—the use of instrumen-
tal variables—is routinely used
in econometrics47,48 and is the
observational equivalent of in-
tention to treat analysis in the
context of randomized con-
trolled trials. It assumes the ab-
sence of alternative pathways
and effect modification. Instru-
mental variables have not tradi-
tionally been used much in epi-
demiology,42,49 although a
specific instance—mendelian
randomization—has been dis-
cussed.50 This requires addi-
tional biological assumptions.50

Thus, epidemiological studies of
social-level interventions used
as natural experiments38–40

have some methodological ad-
vantages over purely individual-
level observational studies.

PRACTICAL ISSUES

With a policy focus, the divi-
sion of material according to
economic sectors is particularly
appropriate, because these sec-
tors generally correspond to
the different government de-
partments (or the equivalent at
the local level). Any policy in-
tervention has a range of possi-
ble outcomes—foreseen and
unforeseen—and health is just
one consideration. For example,
interventions for reducing

smoking must consider employ-
ment implications.51

Consistency also is required
when determining what types of
entry should go in each row,
without being overproscriptive.
Figure 1 has a row with treatment
in clinics, economy, lack of knowl-
edge, and human frailty, which as
a group is highly heterogeneous
and seems to represent a mental
map rather than an attempt to
map out actual causal relations in
the real world. It is better to be
more systematic. For example, in
Figure 3b, there are rows for pol-
icy interventions, health determi-
nants and health outcomes; in
Figure 3c an additional row was
added, because it makes sense to
include vehicle speed as a sepa-
rate row. This disciplined flexibil-
ity is important to achieving the
most appropriate structure.

Because both social exclusion
and a gradient of social inequali-
ties are important factors in the
causation of health and ill
health,52 these—in addition to
overall health—can be included
in diagrams. For example, the
lower part of the diagram can
show the association of risk for
preterm delivery with level of the
stress hormone corticotrophin re-
leasing hormone (CRH), and the
upper part can show the distribu-
tion of CRH levels associated
with socioeconomic status and
experience of racial discrimina-
tion.53 The change version might
examine the impact of a poverty-
reduction program on both CRH
levels and preterm delivery risk.

CONCLUSION

Methods are available for epi-
demiologists to use causal dia-
grams for describing and model-
ing complex systems. They have
some strengths that traditional
epidemiology lacks, including

rigorous causal thinking (as we
saw with confounding and selec-
tion effects), integration of dis-
parate information, and introduc-
tion of exogenous instrumental
variables. They also have the po-
tential to answer calls for interdis-
ciplinary analyses of the forces that
influence health.8,11–13,27,34,35,53,54

The scientific basis of public
health will benefit if epidemi-
ologists and experts in com-
plementary disciplines collab-
orate to adopt this broader
methodology.
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